
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CP-144618) RESULTS OF PHASE CHANGE PAINT TESTS OF 0.04C SCALE 50% FCPEBCLY MODELS (82-0) OF THE SPACE SHUTTLE CREITER IN THE AERC VKF B HYPERSONIC WIND TUNNEL (0H75) (Chrysler Corp.) 32 p HC \$4.00


N76-23345

Unclas G3/18 40662

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER
HOUSTON, TEXAS

DATA MANagement services

SPACE DIVISION CHRYSLER
CORPORATION

DMS-DR-2303 MASA CR-144,618

RESULTS OF PHASE CHANGE PAINT TESTS OF 0.040 SCALE 50% FOREBODY NODELS (82-0) OF THE SPACE SHUTTLE ORBITER IN THE

AEDC VKF B HYPERSONIC WIND TUNNEL (OH75)

рÀ

W. H. Dye Rockwell International Space Division

Prepared Under Contract No. NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

AEDC V41B - E3A

NASA Series Number:

OH75

Model Number:

82-0

Test Date:

というできているというからからではなってあっていませんというというからいからなっていましていましているからないのではないないのではないないというというないないないというというというというというという

September 1, 1975

Occupancy Hours:

Ř

FACILITY COORDINATOR:

DATA ANALYSIS ENGINEERS:

L. L. Trimmer

C. W. Craig and R. J. Curtis

VKF - SH

Rockwell International

ARO, Inc.

Space Division

Arnold Air Force Station,

12214 Lakewood Blvd.

Tennessee 37389

Mail Code AC78 Downey, CA 90241

Phone: (615) 455-2611 x7377

Phone: (213) 922-3076

PROJECT ENGINEERS:

W. H. Dye

L. Carter

Mail Code ACO7

VKF - SH

Rockwell International

ARO, Inc.

Space Division

Arnold Air Force Station,

12214 Lakewood Blvd.

Tennessee 37389

Downey, CA 90241

Phone: (615) 455-2611 x7377

Phone: (213) 922-5005

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison -- D. A. Sarver

Operations -- Maurice Moser, Jr.

Reviewed by:

G. G. McDonald

_

Approved:

L. Glymn Manager

Concurrence: ___

N. D. Kemp, Managef

Data Operations

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

RESULTS OF PHASE CHANGE PAINT TESTS OF 0.040 SCALE 50% FOREBODY MODELS (82-0) OF THE SPACE SHUTTLE ORBITER IN THE AEDC VKF B HYPERSONIC WIND TUNNEL (0H75)

by

W. H. Dye Rockwell International Space Division

ABSTRACT

This report presents post-test information and data from phase change paint, aerodynamic heating wind 'annel tests of a Rockwell International Space Shuttle Orbiter forebody model. These tests were conducted in the Arnold Engineering and Development Center von Karman Facility Tunnel B Hypersonic Wind Tunnel.

The purpose of these tests was to determine the effect of simulated orbiter protuberances and penetrations (including RCS nozzles) on aerodynamic heating rates during simulated entry conditions.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF FIGURES	2
NOMENCLATURE	14
INTRODUCTION	7
CONFIGURATIONS INVESTIGATED	8
TEST FACILITY DESCRIPTION	9
TEST PROCEDURE	10
DATA REDUCTION	12
RESULTS AND DISCUSSION	14
REFERENCES	16
TABLES	
I. MODEL MATERIAL PROPERTIES	17
II. TEST SUMMARY	18
III. MODEL DIMENSIONAL DATA	19
IV. DATA FOR MELT LINES PRESENTED IN FIGURES 3 THRU 8	20
FTGIRES	21

INDEX OF MODEL FIGURES

Figures	Title	Page
1.	Axis Systems	21
2	Model Sketches	
	a. Protuberance Model	22
	b. Mozzle Locations	23
3.	Melt Lines at 20 Degrees Angle of Attack	24
	a. RCS Ports Closed Re/ft = $10^6/\text{ft}$, $T_{pc} = 113^{\circ}\text{F}$	
	b. RCS Ports Open Re/ft = 10^6 /ft, $T_{pc} = 113^{o}$ F	
	c. RCS Ports Closed Re/ft = 2x10 ⁶ /ft, T _{DC} = 113°F	
	d. RCS Ports Open Re/ft = 2x10 ⁶ /ft, T _{pc} = 113°F	
4.	Melt Lines at 25 Degrees Angle of Attack	25
	a. RCS Ports Closed Re/ft = $10^6/\text{ft}$, $T_{pc} = 113^{\circ}\text{F}$	
	b. RCS Ports Open Re/ft = $10^6/\text{ft}$, $T_{pc} = 113^{\circ}\text{F}$	
	c. RCS Ports Closed Re/ft = 2x10 ⁶ /ft, T _{pc} = 131°F	
	d. RCS Ports Open Re/ft = 2x10 ⁶ /ft, T _{DC} = 131°F	
5.	Melt Lines at 30 Degrees Angle of Attack	26
	a. RCS Ports Closed Re/ft = $10^6/\text{ft}$, $T_{pc} = 113^{\circ}\text{F}$	
	b. RCS Ports Open Re/ft = $10^6/\text{ft}$, $T_{\text{DC}} = 113^{\circ}\text{F}$	
	c. RCS Ports Closed Re/ft = 2x10 ⁶ /ft, T _{pc} = 131°F	
	d. RCS Ports Open Re/ft = 2×10^6 /ft, $T_{pc} = 131^{o}$ F	
6	Melt Lines at 35 Degrees Angle of Attack	27
	a. RCS Ports Closed Re/ft = 10 ⁶ /ft, T _{pc} = 113°F	
	b. RCS Ports Open Re/ft = 10^6 /ft, $T_{pc} = 113^{\circ}$ F	

INDEX OF MODEL FIGURES (Continued)

Figures	Title	Page
	c. RCS Ports Closed Re/ft = 2x10 ⁶ /ft, Tpc= 131°F	
	d. RCS rorts Open Re/ft = 2×10^6 /ft, $T_{pc} = 131^{\circ}$ F	
7	Melt Lines at 40 Degrees Angle of Attack	28
	a. RCS Ports Closed Re/ft = 10^6 /ft, $T_{pc} = 113^{\circ}$ F	
	b. RCS Ports Open Re/ft = $10^6/ft$, $T_{pc} = 113^{\circ}F$	
	c. RCB Ports Closed Re/ft = 2x10 ⁶ /ft, Tpc = 131°F	
	d. RCS Ports Open Re/ft = 2×10^6 /ft, $T_{pc} = 131^{\circ}$ F	
8.	Nelt Lines at 45 Degrees Angle of Attack	29
	a. RCS Ports Closed Re/ft = 10 ⁶ /ft, Tpc = 113°F	
	b. RCS Ports Open Re/ft = 106/ft, Tpc = 113°F	
	c. RCS Ports Closed Re/ft = 2x106/ft, Tpc = 131°F	
	d. RCS Ports Open Re/ft = 2x10 ⁶ /ft, T _{pc} = 131°F	

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

NOMENCLATURE

SYMBOL	PLOT SYMBOL	DEFINITION
$\mathtt{c}_{\mathbf{P}}$	С	specific heat of the model material - BTU/lb-°F
g		acceleration due to gravity, 32.17 ft/sec2
h	H(TO)	heat transfer coefficient based on TAW = To
	н(.9ТЭ)	heat transfer coefficient based on $T_{AW} = 0.9 T_{O}$
	$\mathtt{H(r_{low}TO)}$	heat transfer coefficient based on $T_{AW} = r_{low} \times T_{o}$
hs	HREF	reference heat-transfer coefficient based on Fay-Riddell Theory, BTU/ft2-secOR
M _{oo}	MACH NO.	free stream Mach no.
Nr	R	reference sphere radius used to calculate $h_{\rm S}$ (0.04 ft)
P _{ss}	P-INF	free stream static pressure, psia
$P_{\mathbf{r}}$		Prandtl number
P_{O}	PO	tunnel stilling chamber pressure, psia
P ₁ ,P ₂		defined in context
Q _O	Q-INF	free-stream dynamic pressure, psia
R		universal gas constant, ft-lbf/lbm-°R
Re/ft	RE/FT	free stream unit Reynolds number, ft-1
	ROLL-MODEL	model roll angle-deg.
ST	ST(TO)	Stanton number based on To:
		ST(TO) = $\frac{\text{H(TO)}}{p_{\infty}V_{\infty}[.2235 + 1.35 \times 10^{-4}(T_{0} + 560)] \times 32.17}$
rlow		minimum recovery factor used in data reduction; function of angle of attack; r is non-dimensional

MCMCRECLATURE (Continued)

	PLOT	
STOCAL	SYMBOL	11 4 4 1 1 4 (0)
	STREF	reference Stanton number:
	٥	ST(T0) = $\frac{\text{HREF}}{p_{\infty} V_{\infty}[.2235 + 1.35 \times 10^{-4} (T_{0} + 560)] \times 32.17}$
Taw		adiabatic wall temperature, °F
Ť	TBAR	Tpc - TIN Taw - TIN
Tin		initial model temperature, °F
Too	T-INF	free stream static temperature-"R
Tpc	TPC	paint welt temperature, °F
To	70	tunnel stilling chamber temperature, °R
t	TDŒ	time from start of model injection, sec.
Δt	DEL TIME	time model exposed to airstream, sec.
Ve		velocity at edge of the boundary layer, ft/sec.
V∞	V-INF	free stream velocity, ft/sec.
α	ALPHA-MODEL	model angle of attack, deg.
	ALPHA-PREBEND	sting prebend angle, deg.
	Alpha-Sector	tunnel sector pitch angle-deg.
	YAW	model. yaw angle
1		ratio of specific heats of air
· k	K	model thermoconductivity, BTU/ft-sec-°F
β		negative model yaw (positive sideslip)

NOMENCLATURE (Concluded)

STOCOL	PLOT SYMBOL	DEFINITION
μ_{∞}	NU-INF	free stream viscosity, lb-sec/ft2
$\mu_{\mathbf{S}}$		stagnation air viscosity, lb-sec/ft2
$\mu_{\mathbf{W}}$		air viscosity along model wall (lbm/ft-sec)
, p '	RIEO	model material density-lbm/ft3
$ ho_{f W}$		air density along model wall-lbm/ft3
$ ho_{\mathbf{g}}$		stagnation air density $1b_m/rt^3$
Poo	rho-imp	free stream air density, slug/ft3

ていかからのかから、これの、一年にこれのは、後の日本の情報があれる場合のからないのは、これのはないのであっているというないできませんがありませんがありませんが、これのはないできませんでは、それでは、

INTRODUCTION

The purpose of these tests was to determine the effects of simulated RCS nozzles, protuberances, and penetrations on aerodynamic heating rates during simulated entry conditions. The model was tested from 20° through 45° angle of attack at 0° and -1° angle of sideslip. All the above attitudes were tested at a nominal Mach number of 8. Reynolds number was varied from 0.5×10^{6} /ft through 2.0×10^{6} /ft.

CONFIGURATIONS INVESTIGATED

The models were 0.040 scale representations of the forward 50% of the Rockwell International Space Shuttle Orbiter as defined by Rockwell lines VL70-000140C. The Rockwell model designation was 82-0. The models were cast in one piece using Lockheed proprietary material "LH" on a steel sting. There were no movable or removable model parts.

Models used for this test were the 62-1 (paint stripe model) and 82-4 (protuberance model). The "smooth" model was the 82-4 with filled RCS nozzles and penetrations. Figures 2a and 2b illustrate the protuberances and penetrations simulated on the model.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS DOWN

TEST FACILITY DESCRIPTION

The Arnold Engineering Development Center (AEDC) is an Air Force
Facility located in Tullahoma, Tennessee. The tunnel used, Tunnel B, is
located in the von Karman Facility portion of this center. Engineering
and other technical operations in this tunnel are performed by contractor
personnel of ARO, Inc.

Tunnel B is a continuous, closed circuit, variable density wind tunnel with an axisymmetric contoured nozzle and a 50-inch diameter test section. The tunnel can be operated at a nominal Mach number of 6 or 8 at stagnation pressures from 20 to 300 and 50 to 900 psia, respectively, and at a stagnation temperature of up to 1350°R. The model may be injected into the tunnel for a test run and then retracted for model cooling or model changes without interrupting the tunnel flow.

an a side of the second of the

TEST PROCEDURE

大学 · 一大学 · 一大

こうしょ かいきこうそう のまってい かいもの はんかいある かんかい こうしゅん はいのいない はんないない 動きをからない しんしんかん

Tempilaq, a fusible coating that changes phase from an opaque solid to a transparent liquid at temperatures specified by the manufacturer, was used to indicate the location of isc nerms on the model surface. The paints used had melting temperatures of 113, 125, 131, 150, and 175 °F.

Beattie-Coleman Varitron 70 mm sequence cameras were used to record the progression of isotherms on the windward surfaces, as a function of time, during each test run. The cameras were located on the top and side of the wind tunnel and photographed the left side and bottom surfaces of the orbiter models. The cameras were operated at a nominal rate of 1 frame/sec. Kodak TRI-X Pan black-and-white film was used.

Dual television monitors were used throughout the test to facilitate on-line cross-referencing.

Prior to each test run, the model was cleaned with a solvent, spraypainted with the phase-change coating, and allowed to reach isothermal
conditions. The model was then injected into the wind tunnel for about
30 seconds, during which time the progression of the isotherms, indicated
by the demarcation between melted and unmelted coating, was continuously
photographed. The model was then retracted from the wind tunnel and the
cycle repeated for the next run. The model temperature was measured
prior to each run using a thermocouple probe.

CRICINAL PAGE TO THE

([])

TEST PROCEDURE (Continued)

The tests were conducted at the following nominal conditions:

M _∞	P _o ,psia	To,°R	$h_{s}\left[\frac{BTU}{ft^{2}-sec^{-o}R}\right]$	$\frac{\text{Re/ft x } 10^{-6}}{\text{Re/ft x } 10^{-6}}$
7.90	110	1,270	0.0116	0.5
7-94	210	1,270	0.0162	1.0
7.98	430	1,300	0.0230	2.0

DATA REDUCTION

Thin film heat transfer coefficients were calculated for each melt line at which photographs were taken. The coefficients were calculated assuming three different recovery factors.

$$\frac{T_{aw}}{T_{o}} = r_{low}, 0.90, and 1.0$$

The following calculations were then performed to obtain thin film coefficients:

$$\begin{split} \tilde{\mathbf{T}} &= \frac{\mathbf{T}_{\mathrm{pc}} - \mathbf{T}_{\mathrm{IN}}}{\mathbf{T}_{\mathrm{ow}} - \mathbf{T}_{\mathrm{IN}}} \\ \mathbf{T}_{\mathrm{aw}} &= \left(\frac{\mathbf{T}_{\mathrm{aw}}}{\mathbf{T}_{\mathrm{o}}}\right) \times \mathbf{T}_{\mathrm{o}} \\ \mathbf{h} &= \frac{\boldsymbol{\beta} \sqrt{\mathbf{k} \boldsymbol{\rho} \mathbf{C}_{\mathrm{p}}}}{\sqrt{\mathbf{t}}} \mathbf{AVG} \\ &\sqrt{\mathbf{k} \boldsymbol{\rho} \mathbf{C}_{\mathrm{p}}} \mathbf{AVG} \quad \blacksquare \quad \sqrt{\mathbf{k} \boldsymbol{\rho} \mathbf{C}_{\mathrm{p}}} \mathbf{T}_{\mathrm{IN}} + \sqrt{\mathbf{k} \boldsymbol{\rho} \mathbf{C}_{\mathrm{p}}} \mathbf{T}_{\mathrm{pc}} \end{split}$$

NOTE:

where the flow parameter β results from iterative solution of:

$$1 - \bar{T} = e^{\beta^2} (1 - \operatorname{erf} \beta)$$

Theoretical thin film heat transfer coefficients and stagnation point heating rates were calculated using the equations given below:

$$h_s = (.768)(c_p)(P_r)^{-.6}(\rho_w \mu_w)^{.1}(\rho_s \mu_s)^{.1}\sqrt{\frac{dVe}{dx}}$$

where

$$P_r = \frac{\mu C_p}{k} (\mu, C_p \text{ and } k \text{ for air})$$

dve mhe streamwise velocity gradient along the model surface

and

$$\frac{dVe}{dx} = \frac{1}{N_r} \sqrt{2 \text{ Rg } T_0 (1 - \frac{1}{P_1 P_2})}$$

Nr = Nose radius, 0.0175 foot radius (1 foot full scale)

DATA REDUCTION (Concluded)

$$P_{1} = \begin{bmatrix} \frac{\gamma+1}{2} & M_{\infty}^{2} \end{bmatrix}^{\frac{\gamma}{\gamma-1}}$$

$$P_{2} = \begin{bmatrix} \frac{\gamma+1}{2\gamma M_{\infty} - (\gamma-1)} \end{bmatrix}^{\frac{\gamma}{\gamma-1}}$$

Melt lines are shown on selected photographs taken during the test and are presented at the back of this report. The melt line on each photograph shows isotherms. Thin film coefficients and free stream data corresponding to the isotherms are presented in Table IV.

The photographs are presented to provide qualitative data showing effects of the protuberances and depressions.

いては、これのでは、こ

Uncertainties of the basic tunnel parameters were estimated from repeat calibrations of the PO and TO instruments and from the repeatability and uniformity of the tunnel flow during calibrations. The parameters PO, TO, and MACH NO. with their uncertainties were then used to compute the uncertainties in the other parameters dependent on these by means of the Taylor series method of error propagation.

Uncertainty, percent					
MACH NO.	<u>P0</u>	TO	RE/FT	HREF	
+ 0.4	<u>+</u> 0.1	+ 0.4	+ 1.2	0.8	

An estimate of the data precision of phase change paint data is hampered by the fact that an observer must determine the location of the melt line. For this analysis, only uncertainties attributable to the measured parameters are considered. The parameters needed for the solution of the equation for the heat-transfer coefficient, h, are T_{pc} , T_{IN} , T_{aw} , $\sqrt{\rho k C_p}$, and Δt . The table below summarizes the nominal uncertainties in these specific parameters.

「中国」を持ちている。 これのでは、これのでは、これでは、「はいます。 ないのかい ないのかい ないしょうしょ ないない ないないない ないない ないない ないない できない ないしゅう こうしゅうしゅう しゅうしゅう

Parameter	Uncertainty (+)
Δt .	<u>+</u> 1.0
√ pkC _p	<u>+</u> 10.0
T _{IN}	<u>+</u> 0.5
T _o (T _{aw})	<u>+</u> 0.5
Tpc	<u>+</u> 0.5

RESULTS AND DISCUSSION (Concluded)

It should be remembered that the above uncertainties in T_{aw} and T_{pc} only reflect nominal measurement uncertainties. As previously mentioned, the interpretation of when phase change occurs (i.e., T_{pc}) is a matter of observer experience, and the "correct" assumption of what should be used for T_{aw} also requires engineering judgment. However, combining the above measurement uncertainties with the corresponding error sensitivity factor (derived by using the equation for the heat-transfer coefficient, h, and taking the square root of the sum of the squares) yields the following:

for $T_{pc} \le 200^{\circ}F$, h uncertainty $\approx \pm 13$ percent for $T_{pc} > 200^{\circ}F$, h uncertainty $\approx \pm 11$ percent.

REFERENCES

- 1) Test Data from the MASA/Rockwell International Space Shuttle Test
 (OH-75) conducted in the AEDC VKF Tunnel B, by L. Carter and
 C. Kaul.
- 2) Test Facilities Handbook (Tenth Edition). "von Karman Gas Dynamics Facility, Vol. 3." Arnold Engineering Development Center, May, 1974
- 3) "Pretest Information for Phase Change Paint Tests on the 82-\$\phi\$.040 Scale 50% Forebody Models of the Rockwell International Space Shuttle Orbiter in the AEDC VKF 'B' Hypersonic Wind Tunnel (OH-75)," SD-SH-0203, By W. H. Dye, dated August, 1975.

TABLE I

MODEL MATERIAL PROPERTIES

Tpc, or	TEMPERATURE AT WHICH PROPERTIES WERE EVALUATED, OF	$\sqrt{\frac{\rho C_k}{p}}$, Btu/ft ² - $^{\circ}$ R-sec ^{1/2}
113	95.5	0.0478
125	101.5	0.0481
131	104.5	0.0483
150	114.0	0.0487
175	125. 5	0.0493

THE SECTION OF THE PARTY OF THE

The model material properties were evaluated at a temperature equal to the average of the initial and phase-change paint temperatures.

TABLE II

TEST SUMMARY

Re/ft x 10 ⁻⁰ (ft-1)	MODEL ALPHA (deg)	YAW (deg)	PAINT MELT TEMP (°F)	SMOOTH MODEL GROUP NO.	PROTUBERANCE MODEL GROUP NO.
1.0	30 35 35 40 20 25 30 35 40 45 20 45 20	0 0 1.0 0 1.0 0 0 1.0 0	113 125 125 113 113 113 125 113 125 113 125 113 125	42 43 44 11 10 34 33 35 31 36 12 13	39 40 41 8 9 27 28 29 38 30 37 4 6 5
	20 25 25 39 35 40 45 45	0000000	175 131 175 131 131 131 131	18 19 17 20 21 14 15	25 22 23 26 1 2

Data Group 24 had no computer data. This group number was then voided.

PERCOUCERLITY OF THE

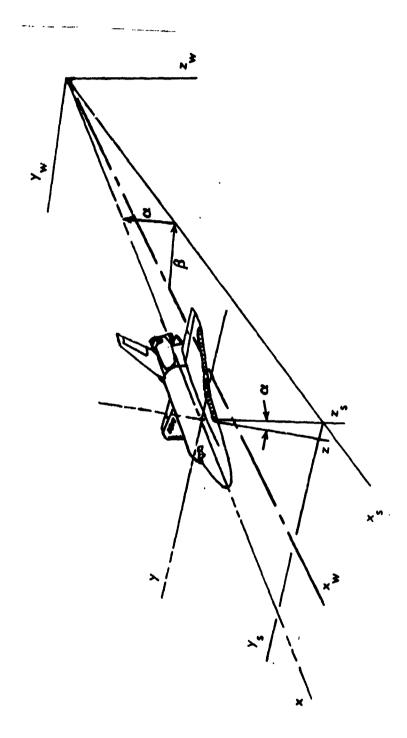
TABLE III

MODEL DIMENSIONAL DATA

MODEL COMPONENT: BODY - BGO		
GENERAL DESCRIPTION: 50% or	piter forebody, vehi	cle 140C.
NOTE: This body includes a	small portion of th	ne wing glove.
MODEL SCALE: 0.040		
DRAWING NUMBER: VL70-00014	OC .	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length	645.15	25.80
Max Width	330.00	13.20
MODEL COMPONENT: CAMOPY - (
GENERAL DESCRIPTION: Config	guration 4 canopy as	nd windshield as
used with B25, six glass par	nes in windshield	
MODEL SCALE: 0.040		
DRAWING NUMBER: VL70-000140	OB, 140C, 202B	
DIMENSIONS:	FULL S	SCALE MODEL SCALE
Length $(X_0 = 434.643)$	to 670) In. 235	357 9.414
Max Width		
Max Depth Glass - In	. 28.	.00 1.12
Mose/windshield inter	section, $X_0 = 434$.643 17.386

TABLE IV DATA FOR MELA LINES PRESENTED IN FIGURES 3 THROUGH 8

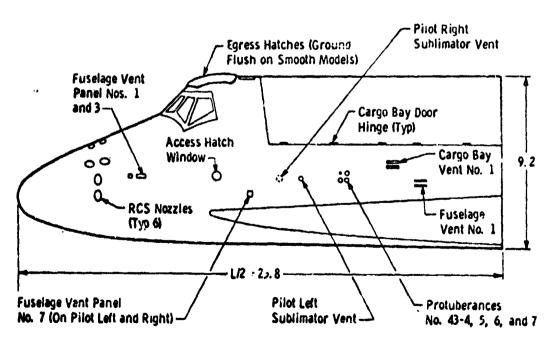
Figure	Group	ď	Mach No.	Re/rt	θ _O	ħ	ą P		⁸ ц/ч		55
				×10-6	(Psia)	(%)	(H_1-0.04ft)	(τ_0)	(.9T _o)	rlowTO*	(f ₀)
Ŗ	*		4.7	1.029	212.5	1269	0.0162h	0.0498	0.0610	0.0688	0.001308
R	2	19.8%	まっ	1.020	212.3	1275	0.01625	0.0503	0.0616	1690.0	0.001326
8	87	•	2.8	1.989	431.2	6621	0.0298	0.0856	0.1057	0.1199	0.001617
A	83	•	3.2	1.995	432.0	88 84 1	0.0230	1980₹	0.1068	0.1210	0.001630
3	33	•	ま・	1.027	212.7	KZI	0.01626	0.0239	0.0292	0.0329	0.000631
ş	8	•	また	1.018	211.8	1275	0.01623	0.0239	0.0292	0.0328	0.000631
¥	19	•	2.88	1.985	430.9	1300	0.02297	0.0474	0.0579	0.0650	0.000893
P	ผ	•	2.8	1.982	131.2	1305	0.02299	0.0493	0.0602	0.0676	0.000935
ઝ	R	•	まい	1.024	2125	1273	0.01625	0.0256	0.0312	0.0351	0.000675
ድ	8		7.94	1.01	210.6	3276	0.01619	0.0257	0.0312	0.0351	0.000680
25	8		7.88	1.98	431.3	1300	0.02298	0.0273	0.0333	0.0374	0.000517
R	23	•	8.	1.987	431.9	1301	0.02300	0.0277	0.0339	0.0380	0.000526
ঠ	宏	•	7.94	1.020	211.6	1273	0.01622	0.0246	0.0301	0.0338	0.000650
જુ	8	•	7.9	1.017	210.9	1272	0.01619	0.0252	0.0308	0.0345	0.000667
9	ผ	•	7.98	1.98	431.9	1297	0.02290	0.0260	0.0318	0.0358	0.000492
9	8	•	.5 88.7	1.995	\$2.0£	1300	0.02302	0.0259	0.0316	0.0355	0.000490
78	ឧ	•	まこ	1.009	1.212	48, [0.01626	0.0197	0.0240	0.0270	0.000524
و	t	•	まご	1.022	211.5	البهد	0.01621	0.0197	0.0241	0.0270	0.000521
<u>ر</u>	17	•	2.8	1.993	430.5	15%	0.02295	0.0232	0.0284	0.0319	0.000th
79	~ I	•	38.1	1.975	431.2	1305	0.02300	0.0241	0.0294	0.0331	0.000458
జీ	E	•	7.94	1.020	210.9	1270	0.01619	0.0450	0.0549	0.0616	0.001139
සි	2		7.94	1.024	212.0	1271	0.01623	0.0461	0.0563	0.0632	0.001217
జ	15	•	7.8	1.994	431.6	1297	0.02298	0.0438	0.0535	•	0.000829
Б 8	α.	•	2.8	1.987	431.4	1300	0.0299	0.0467	0.0570	0.0641	0.000847
];										
-	MOT	<u> </u>									
3 %)) (S C C									
) R	0.0	12									
35	0.923	123									
0 1 1	ى م. ە)34 125									
` '	•	`									

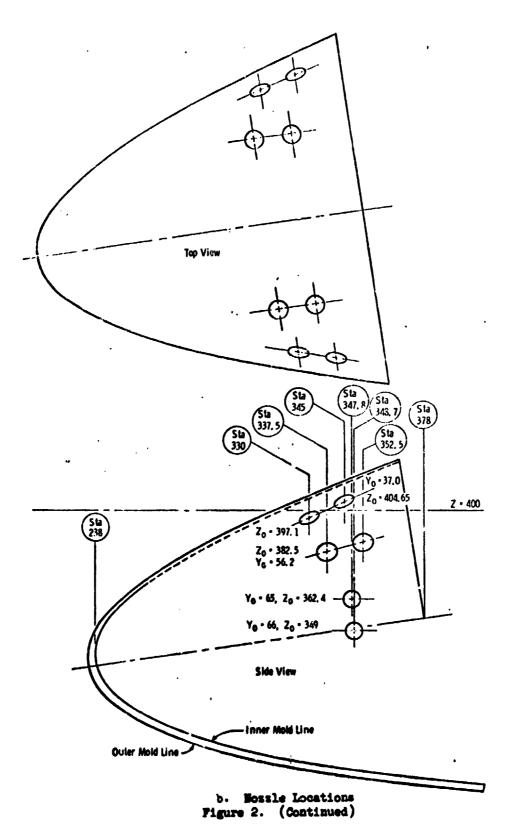

20

##

REPRODUCIBILITY OF THE ORIGIN . I MAKE IS POOR

()


and the second of the second o

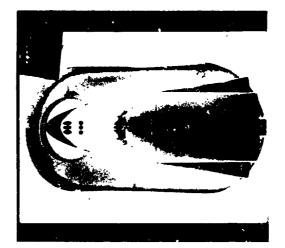

terring with more than a specific

Note: The smooth paint models had the same basic dimensions as are 21,0wn here but did not have the protuberances.

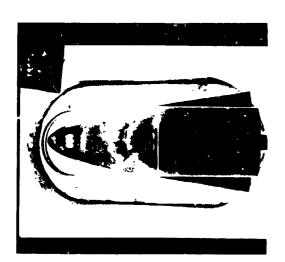
All dimensions are in inches.

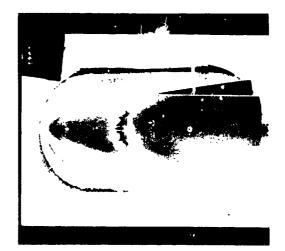


a. Protuberance Model Figure 2. Model Sketches

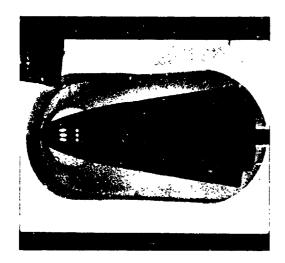


を発生を動物のです。 かんていている はまっていかい かんかいかん かんかかい はましょうしゃ あいしん とうない これできる あっかい なんない カール かないき ないもの

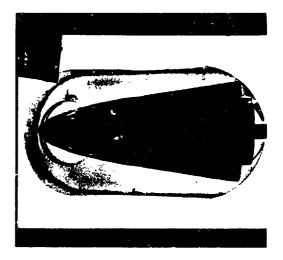

23


a. RCS Ports Closed
Re/ft = 100/ft
Tpc = 1130F

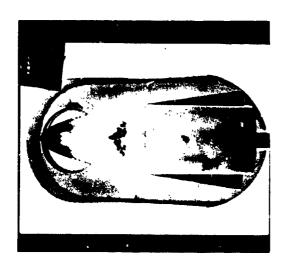
b. RCS Ports Open
Re/ft = 100/ft
Tpc = 1130F

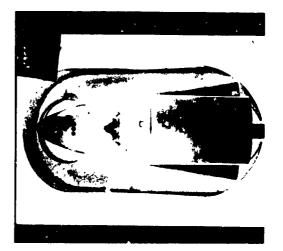


c. RCS Ports Closed Re/ft = 2x10⁶/ft Tpc = 113⁶F

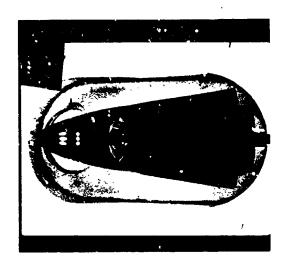


d. RCS Porus Open
Re/ft = 2x106/ft
Tpc = 113°F


Figure 3. Melt Lines at 20 Degrees Angle of Attack


a. RCS Ports Closed Re/ft = 10^o/ft T_{pc} = 113^oF

b. RCS Ports Open Re/ft = 10⁰/ft T_{pc} = 113⁰F



c. RCS Ports Closed Re/ft = 2x10⁰/ft Tpc = 131°F

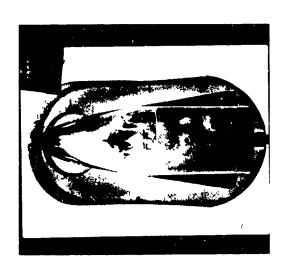
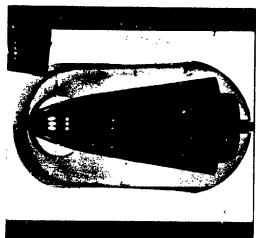
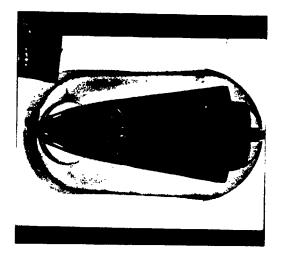

d. RCS Ports Open
Re/ft = 2x106/ft
Tpc = 1310F


Figure 4. Melt Lines at 25 Degrees Angle of Attack

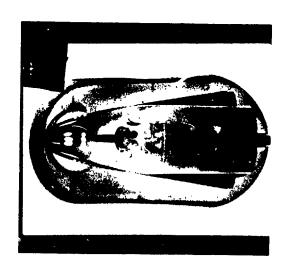
a. RCS Ports Closed Re/ft = 10⁰/ft T_{pc} = 113⁰F

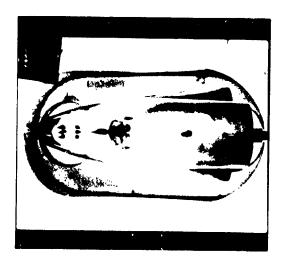
b. RCS Ports Open Re/ft = 10⁵/ft T_{DC} = 113^oF



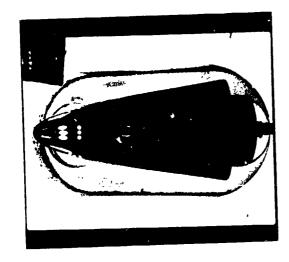

c. RCS Ports Closed Re/ft = 2xl0⁶/ft T_{pc} = 13l^oF

d. RCS Ports Open
Re/ft = 2x10⁶/ft
T_{pc} = 131^oF

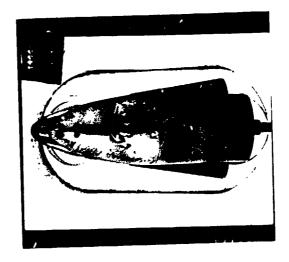

Figure 5. Melt Lines at 30 Degrees Angle of Attack


a. RCS Ports Closed
Re/ft = 10⁶/ft
Tpc = 113^oF

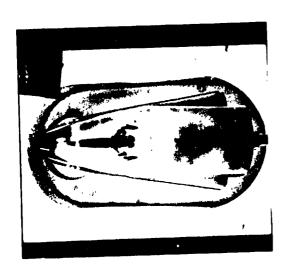
b. RCS Ports Open
Re/ft = 10⁰/ft
Tpc = 113°F

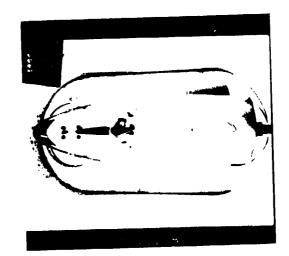


c. RCS Ports Closed Re/ft = 2x100/ft Tpc = 131°F

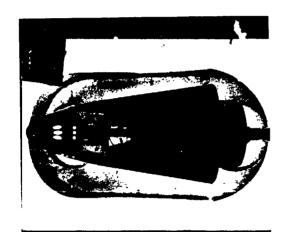


d. RCS Ports Open Re/ft = 2×10^{5} /ft T_{pc} = 131^{o} F

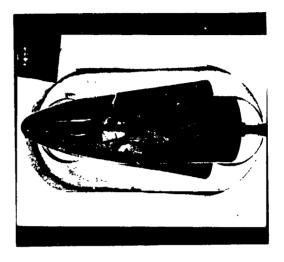

Figure 6. Melt Lines at 35 Degrees Angle of Attack


a. RCS Ports Closed
Re/ft = 10⁶/ft
T_{pc} = 113^oF

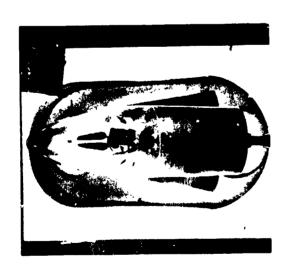
b. RCS Ports Open
Re/ft = 100/ft
Tpc = 1130F

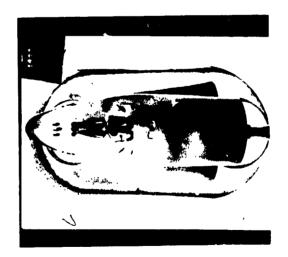


c. RCS Ports Closed
Re/ft = 2x100/ft
Tpc = 1310F



d. RCS Ports Open
Re/ft = 2x10⁰/ft
Tpc = 131°F


Figure 7. Melt Lines at 40 Degrees Angle of Attack


a. RCS Ports Closed
Re/ft = 10⁶/ft
T_{pc} = 113⁶F

b. RCS Ports Open Re/ft = 100/ft Tpc = 1130F

c. RCS Ports Closed Re/ft = 2x10^o/ft T_{pc} = 131^oF

d. RCS Ports Open
Re/ft = 2x10⁶/ft
Tpc = 131⁹F

Figure 8. Melt Lines at 45 Degrees Angle of Attack